LocalAI can be run on Nvidia ARM64 devices, such as the Jetson Nano, Jetson Xavier NX, and Jetson AGX Xavier. The following instructions will guide you through building the LocalAI container for Nvidia ARM64 devices.

Prerequisites

Build the container

Build the LocalAI container for Nvidia ARM64 devices using the following command:

  git clone https://github.com/mudler/LocalAI

cd LocalAI

docker build --build-arg SKIP_DRIVERS=true --build-arg BUILD_TYPE=cublas --build-arg BASE_IMAGE=nvcr.io/nvidia/l4t-jetpack:r36.4.0 --build-arg IMAGE_TYPE=core -t quay.io/go-skynet/local-ai:master-nvidia-l4t-arm64-core .
  

Otherwise images are available on quay.io and dockerhub:

  docker pull quay.io/go-skynet/local-ai:master-nvidia-l4t-arm64-core
  

Usage

Run the LocalAI container on Nvidia ARM64 devices using the following command, where /data/models is the directory containing the models:

  docker run -e DEBUG=true -p 8080:8080 -v /data/models:/build/models  -ti --restart=always --name local-ai --runtime nvidia --gpus all quay.io/go-skynet/local-ai:master-nvidia-l4t-arm64-core
  

Note: /data/models is the directory containing the models. You can replace it with the directory containing your models.

Last updated 29 Jan 2025, 15:16 +0100 . history