LocalAI supports generating embeddings for text or list of tokens.

For the API documentation you can refer to the OpenAI docs: https://platform.openai.com/docs/api-reference/embeddings

Model compatibility

The embedding endpoint is compatible with llama.cpp models, bert.cpp models and sentence-transformers models available in huggingface.

Manual Setup

Create a YAML config file in the models directory. Specify the backend and the model file.

  name: text-embedding-ada-002 # The model name used in the API
parameters:
  model: <model_file>
backend: "<backend>"
embeddings: true
# .. other parameters
  

Huggingface embeddings

To use sentence-transformers and models in huggingface you can use the sentencetransformers embedding backend.

  name: text-embedding-ada-002
backend: sentencetransformers
embeddings: true
parameters:
  model: all-MiniLM-L6-v2
  

The sentencetransformers backend uses Python sentence-transformers. For a list of all pre-trained models available see here: https://github.com/UKPLab/sentence-transformers#pre-trained-models

Llama.cpp embeddings

Embeddings with llama.cpp are supported with the llama-cpp backend, it needs to be enabled with embeddings set to true.

  name: my-awesome-model
backend: llama-cpp
embeddings: true
parameters:
  model: ggml-file.bin
# ...
  

Then you can use the API to generate embeddings:

  curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
  "input": "My text",
  "model": "my-awesome-model"
}' | jq "."
  

šŸ’” Examples

  • Example that uses LLamaIndex and LocalAI as embedding: here.

Last updated 27 Nov 2024, 16:34 +0100 . history